Research Article

Multiworking Conditions Anomaly Detection of Mechanical System Based on Conditional Variational Auto-Encoder

Table 7

Anomaly detection accuracy of different methods.

DatasetBaseline method
PCALOFVAECVAEMW-CVAE
F1-scoreAUCF1-scoreAUCF1-scoreAUCF1-scoreAUCF1-scoreAUC

CWRU1.01.01.01.01.01.01.01.01.01.01.01.01.01.0
JNU0.84640.89860.84840.89810.74480.69490.81550.88950.98190.99220.98290.99730.99790.9970
PU0.66060.67230.64410.50910.66040.61090.64410.49720.76530.69980.71850.63880.39870.6075

The bold type indicates that the method obtains the best performance index in this database. For example, in database PU, 0.6723 (bold) indicates that PCA methods outperform other methods on AUC performance indicators. In addition, MW-CVAE wins every performance index (F1-score and AUC).