Research Article
Application of BP Neural Network Improved by Fireworks Algorithm on Suspender Damage Prediction of Long-Span Half-Through Arch Bridge
Table 6
Part of damage training sample data of No. 30 unit (I).
| Node | Damage degree | 10% | 20% | 30% | 40% | 50% | 59% |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0.1662 | 0.1702 | 0.1667 | 91.275 | 3 | 0 | 0 | 0.3515 | 0.3531 | 0.3625 | 158.625 | 4 | 0 | 0 | 0.1664 | 0.3533 | 0.3675 | 216.791 | 5 | 0 | 0 | 0.1665 | 0.1659 | 0 | 264.95 | 6 | 0 | 0.1661 | 0 | 0.1705 | 0 | 290.175 | 7 | 0.1669 | 0.1663 | 0.1663 | 0 | 0 | 321.0266 | 8 | 0.1667 | 0 | 0 | 0.1767 | 0 | 317.34 | 9 | 0.0824 | 0.0571 | 0.043 | 0.0433 | 0.2524 | 261.84 | 10 | 0.0826 | 0.0727 | 0.0731 | 0.0855 | 0.0525 | 211.28 | 11 | 0.1042 | 0.1917 | 0.138 | 0.141 | 0.1506 | 153.583 | 12 | 0.1041 | 0.2073 | 0 | 0 | 0.235 | 91.333 | 13 | 0.1664 | 0.1765 | 0 | 0.1672 | 0 | 13.41 | 14 | 0.3323 | 0.5691 | 0.4791 | 0.739 | 0.8825 | 131.053 | 15 | 0.1658 | 0 | 0.1665 | 0.5685 | 0.775 | 197.6223 | 16 | 0.1601 | 0.5689 | 0.9577 | 2.55 | 2.175 | 328.271 | 17 | 7.4573 | 16.5638 | 26.1535 | 39.5231 | 58.6427 | 698.4525 | 18 | 8.1509 | 17.0935 | 27.8201 | 40.9312 | 60.0525 | 701.3361 | 19 | 16.537 | 38.0311 | 66.742 | 103.198 | 145.995 | 2379.856 | 20 | 17.055 | 40.3413 | 68.957 | 105.773 | 146.894 | 2415.182 | 21 | 18.543 | 41.7536 | 69.065 | 107.561 | 148.863 | 2568.675 | 22 | 19.145 | 42.7431 | 71.653 | 108.973 | 150.678 | 2605.412 | 23 | 20.973 | 43.7159 | 72.132 | 110.374 | 152.896 | 2689.325 | 24 | 21.315 | 44.4381 | 73.035 | 112.875 | 153.787 | 2701.188 | 25 | 22.045 | 44.983 | 73.958 | 118.053 | 157.329 | 2798.237 | 26 | 22.813 | 45.162 | 74.345 | 119.765 | 158.995 | 2835.889 | 27 | 28.549 | 56.461 | 85.842 | 211.537 | 173.139 | 2904.647 | 28 | 29.735 | 57.885 | 86.982 | 213.987 | 173.568 | 2981.427 | 29 | 38.941 | 68.125 | 91.413 | 223.614 | 223.854 | 3135.532 | 30 | 64.37 | 138.1 | 201.973 | 325.705 | 578.1125 | 637.1875 | 31 | 62.81 | 136.47 | 198.149 | 323.436 | 574.672 | 638.4538 | 32 | 39.076 | 71.3125 | 95.787 | 141.314 | 213.424 | 2144.7475 | 33 | 28.876 | 59.427 | 89.288 | 135.4134 | 189.413 | 1943.3546 | 34 | 27.971 | 58.546 | 87.537 | 133.612 | 187.375 | 1913.5632 | 35 | 23.897 | 53,995 | 83.749 | 118.414 | 175.441 | 1854.574 | 36 | 22.769 | 52.895 | 82.564 | 117.142 | 173.982 | 1832.127 | 37 | 21.4523 | 49.375 | 79.845 | 95.1575 | 164.7813 | 1722.427 | 38 | 20.6345 | 48.174 | 78.541 | 93.825 | 163.3574 | 1701.132 | 39 | 19.0528 | 46.982 | 76.564 | 91.413 | 161.7462 | 1690.545 | 40 | 18.9541 | 47.036 | 75.635 | 91.854 | 161.3421 | 1663.213 | 41 | 17.3425 | 45.758 | 74.138 | 90.751 | 159.876 | 1589.527 | 42 | 16.9547 | 43.325 | 73.062 | 87.054 | 158.645 | 1561.172 | 43 | 8.5612 | 18.095 | 32.797 | 42.1312 | 66.0937 | 1345.3341 | 44 | 7.9893 | 17.113 | 31.942 | 41.5752 | 65.7401 | 1297.5425 | 45 | 0.1678 | 0.5524 | 1.0875 | 2.1541 | 4.5425 | 345.2674 | 46 | 0.1794 | 0 | 0.1673 | 0.5327 | 0.8625 | 254.4452 | 47 | 0.3795 | 0.5674 | 0.6887 | 0.7975 | 0.9812 | 102.425 | 48 | 0.1673 | 0.1792 | 0 | 0.2425 | 0 | 13.5547 | 49 | 0.1054 | 0.1898 | 0 | 0 | 0.2525 | 91.2654 | 50 | 0.1045 | 0.1819 | 0.225 | 0.2251 | 0.2506 | 139.4425 | 51 | 0.08703 | 0.0726 | 0.0798 | 0.0825 | 0.0235 | 209.3234 | 52 | 0.087 | 0.0643 | 0.0411 | 0.0621 | 0.4354 | 253.4349 | 53 | 0.1701 | 0 | 0 | 0.2674 | 0 | 287.7556 | 54 | 0.1676 | 0.1675 | 0.1662 | 0 | 0 | 305.4553 | 55 | 0 | 0.1673 | 0 | 0.2452 | 0 | 285.2242 | 56 | 0 | 0 | 0.1673 | 0.2519 | 0 | 256.3345 | 57 | 0 | 0 | 0.1662 | 0.4425 | 0.4312 | 223.1525 | 58 | 0 | 0 | 0.4197 | 0.4509 | 0.4411 | 167.3255 | 59 | 0 | 0 | 0.1659 | 0.1734 | 0.1741 | 87.5254 | 60 | 0 | 0 | 0 | 0 | 0 | 0 |
|
|