Research Article
Application of BP Neural Network Improved by Fireworks Algorithm on Suspender Damage Prediction of Long-Span Half-Through Arch Bridge
Table 9
Prediction results of each model for comparative analysis.
| Test no. | Model | AE (%) | AEmax (%) | R | T/s |
| 1 | BPNN | 5.74 | 20.81 | 0.902 | 60.49 | GA-BPNN | 4.26 | 13.26 | 0.948 | 52.36 | PSO-BPNN | 4.03 | 13.19 | 0.959 | 51.42 | FWA-BPNN | 3.59 | 9.79 | 0.963 | 51.73 |
| 2 | BPNN | 5.62 | 22.35 | 0.913 | 59.16 | GA-BPNN | 4.11 | 12.79 | 0.962 | 43.69 | PSO-BPNN | 3.98 | 11.36 | 0.969 | 42.58 | FWA-BPNN | 3.24 | 9.14 | 0.975 | 40.48 |
| 3 | BPNN | 5.49 | 20.10 | 0.926 | 51.38 | GA-BPNN | 3.83 | 11.51 | 0.964 | 41.67 | PSO-BPNN | 3.72 | 11.34 | 0.973 | 41.09 | FWA-BPNN | 3.07 | 8.82 | 0.982 | 40.16 |
|
|