Research Article

Deep Multiscale Soft-Threshold Support Vector Data Description for Enhanced Heavy-Duty Gas Turbine Generator Sets’ Anomaly Detection

Table 1

Configuration of the main encoder backbone network parameters.

LayerAlgorithm structureParameters

Branch 1Convolution, batch normalization, ReLU activationCov1d (133, 128, 3, 2, 1)
Convolution, batch normalization, ReLU activationCov1d (128, 64, 3, 2, 1)
Convolution, batch normalization, ReLU activationCov1d (64, 32, 3, 2, 1)

Branch 2Convolution, batch normalization, ReLU activationCov1d (133, 128, 5, 2, 2)
Convolution, batch normalization, ReLU activationCov1d (128, 64, 5, 2, 2)
Convolution, batch normalization, ReLU activationCov1d (64, 32, 5, 2, 2)

Branch 3Convolution, batch normalization, ReLU activationCov1d (133, 128, 7, 2, 3)
Convolution, batch normalization, ReLU activationCov1d (128, 64, 7, 2, 3)
Convolution, batch normalization, ReLU activationCov1d (64, 32, 7, 2, 3)

GAP layerGlobal average poolingC:32

Feature fusion layerFeature concatenationC:96

Soft thresholding activation layerSoft thresholding activation moduleC:96