Research Article
A Higher Order Iterative Method for Computing the Drazin Inverse
| PMX_ := | | WithId = SparseArrayi_, i_} -> 1.}, {n, n, | |
X1 = A.X; X2 = −7 Id + X1.(9 Id + X1.(−5 Id + X1)); X3 = X1.X2; | |
(−1/8) X.X2.(12 Id + X3.(6 Id + X3)) | |
; | | InitialMatrixA_ := 1/SingularValueListA, 1 [1 ConjugateTransposeA; | | InitialDrazinA_ := 2/TrMatrixPowerA, k + 1 MatrixPowerA, k; | | DrazinInverseA_, tolerance_ := Ifk == 0, | |
ModuleX0 = InitialMatrixA, FixedPoint(PM# &), X0, | |
SameTest -> (Norm#1 - #2, Infinity <= tolerance &), | |
ModuleX0 = InitialDrazinA, FixedPoint(PM# &), X0, | |
SameTest -> (Norm#1 − #2, Infinity <= tolerance &) | |
; |
|