Research Article
Predicting Subcontractor Performance Using Web-Based Evolutionary Fuzzy Neural Networks
Table 1
Subcontractor performance historical records.
| | Pattern no. | Performance | Input | Output | | Last 3 | Last 2 | Last 1 | Normalized performance |
| | Input patterns | | 1 | 80 | 72 | 76 | 76 | 0.8333 | | 2 | 86 | 76 | 76 | 80 | 0.8958 | | 3 | 74 | 80 | 76 | 76 | 0.7708 | | 4 | 70 | 76 | 76 | 74 | 0.7292 | | 5 | 68 | 56 | 62 | 66 | 0.7083 | | 6 | 66 | 60 | 66 | 68 | 0.6875 | | 7 | 66 | 70 | 72 | 68 | 0.6875 | | 8 | 58 | 62 | 66 | 60 | 0.6042 | | 9 | 56 | 66 | 60 | 58 | 0.5833 | | 10 | 80 | 76 | 74 | 76 | 0.8333 | | 11 | 86 | 74 | 76 | 80 | 0.8958 | | 12 | 88 | 76 | 80 | 86 | 0.9167 | | 13 | 76 | 86 | 80 | 80 | 0.7917 | | 14 | 70 | 66 | 68 | 66 | 0.7292 | | 15 | 70 | 68 | 66 | 70 | 0.7292 | | 16 | 76 | 66 | 70 | 70 | 0.7917 | | 17 | 74 | 66 | 70 | 76 | 0.7708 | | 18 | 76 | 70 | 76 | 74 | 0.7917 | | 19 | 80 | 74 | 76 | 76 | 0.8333 | | 20 | 66 | 62 | 58 | 62 | 0.6875 | | 21 | 68 | 58 | 62 | 66 | 0.7083 | | 22 | 76 | 76 | 74 | 76 | 0.7919 |
| | Test patterns | | 23 | 66 | 62 | 56 | 60 | 0.6875 | | 24 | 68 | 56 | 60 | 66 | 0.7083 | | 25 | 66 | 60 | 66 | 68 | 0.6875 | | 26 | 66 | 66 | 68 | 66 | 0.6875 | | 27 | 70 | 68 | 66 | 66 | 0.7292 | | 28 | 76 | 66 | 66 | 70 | 0.7917 | | 29 | 74 | 66 | 70 | 76 | 0.7708 | | 30 | 76 | 70 | 76 | 74 | 0.7917 | | 31 | 76 | 76 | 74 | 76 | 0.7917 | | 32 | 80 | 74 | 76 | 76 | 0.8333 | | 33 | 86 | 76 | 76 | 80 | 0.8958 | | 34 | 88 | 76 | 80 | 86 | 0.9167 |
|
|
Note: Last 1 denotes the subcontractor’s latest performance, and so forth. Normalized performance is divided by 96.
|