Research Article
Damage Identification for Large Span Structure Based on Multiscale Inputs to Artificial Neural Networks
Table 16
The choice of the best neural network based on the strain damage parameters.
| Training functions | Sets | Neurons | Noise levels | Maximum error | 0.00 | 0.01 | 0.02 | 0.04 | 0.08 | 0.10 |
| T_LM | 288 | (15,6) | 0.144 | 0.157 | 0.196 | 0.142 | 0.122 | 0.149 | 0.196 | T_SCG | 192 | (15,6) | 0.286 | 0.275 | 0.177 | 0.266 | 0.199 | 0.206 | 0.286 | T_RP | 264 | (15,7) | 0.261 | 0.229 | 0.391 | 0.308 | 0.295 | 0.335 | 0.391 | T_GDM | 192 | (15,6) | 1.073 | 0.572 | 1.031 | 1.633 | 0.826 | 1.580 | 1.633 | T_GDX | 240 | (17,8) | 0.493 | 0.304 | 0.392 | 0.593 | 0.297 | 0.087 | 0.593 | T_CGF | 192 | (13,6) | 0.251 | 0.214 | 0.169 | 0.153 | 0.268 | 0.305 | 0.305 | T_BFG | 192 | (15,6) | 0.499 | 0.484 | 0.198 | 0.184 | 0.184 | 0.240 | 0.499 |
|
|