Research Article
Nature Inspired Computational Technique for the Numerical Solution of Nonlinear Singular Boundary Value Problems Arising in Physiology
Table 1
Parameter settings of algorithms.
| GA | ASA | IPA | Parameters | Settings | Parameters | Settings | Parameters | Settings |
| Population size | 240 | Start point | Optimal values from GA | Start point | Optimal values from GA | Chromosome size | 30 | Maximum iterations | 400 | Maximum iterations | 1000 | Selection function | Stochastic uniform | Maximum function evaluations | 150000 | Maximum function evaluations | 150000 | Mutation function | Adaptive feasible | Function tolerance | 1 | Function tolerance | 1 | Crossover function | Heuristic | Nonlinear constraint tolerance | 1 | Nonlinear constraint tolerance | 1 | Hybridization |
PS/IPA | SQP tolerance | 1 | SQP tolerance | 1 | X tolerance | 1 | X tolerance | 1 | Number of generations | 2000 | | | Hessian | BFGS | Function tolerance | 1 | | | Derivative type | Central differences | Nonlinear constraint tolerance | 1 | | | | | Bounds | −15, +15 | | | | |
|
|