Research Article
Predicting Wireless MmWave Massive MIMO Channel Characteristics Using Machine Learning Algorithms
Table 3
RMSE Loss with Different Dataset in the Virtual Scenarios.
| Dataset | 10100R | 3232R | 10100R and 3232R |
| RMSE | TL | VL | TL | VL | | |
| PL | 0.6408 | 0.9586 | 4.4932 | 4.7832 | 0.1426 | 0.2004 |
| DM | 0.4232 | 0.4762 | 1.2986 | 2.3647 | 0.3259 | 0.2014 |
| DS | 0.2895 | 0.3708 | 1.7822 | 1.9887 | 0.1624 | 0.1865 |
| AAMA | 11.0096 | 13.3897 | 14.3276 | 14.4829 | 0.7684 | 0.9245 |
| AASA | 4.6625 | 5.6897 | 17.2259 | 18.7624 | 0.2707 | 0.3033 |
| AAMD | 11.8287 | 13.4187 | 12.8583 | 14.6427 | 0.9199 | 0.9164 |
| AASD | 5.3249 | 6.3327 | 21.0490 | 21.3898 | 0.2529 | 0.2961 |
| EAMA | 1.3355 | 1.4970 | 3.8356 | 4.8577 | 0.3482 | 0.3082 |
| EASA | 1.5680 | 1.8255 | 3.5929 | 3.8308 | 0.4364 | 0.4765 |
| EAMD | 0.8228 | 0.9298 | 2.8473 | 4.3977 | 0.2890 | 0.2114 |
| EASD | 2.3911 | 3.0512 | 2.7861 | 3.2362 | 0.8582 | 0.9428 |
|
|