Research Article
Developing Deep Survival Model for Remaining Useful Life Estimation Based on Convolutional and Long Short-Term Memory Neural Networks
Table 2
The performance comparing our approach and state-of-the-art methods.
| Methods | FD001 | FD002 | FD003 | FD004 | RMSE | Score | RMSE | Score | RMSE | Score | RMSE | Score |
| MLP [41] | 37.56 | | 80.03 | | 37.39 | | 77.37 | | SVR [42] | 20.96 | | 42.00 | | 21.05 | | 45.35 | | RVR [43] | 23.80 | | 31.30 | | 22.37 | | 34.34 | | CNN [31] | 18.45 | | 30.29 | | 19.82 | | 29.16 | | LSTM [22] | 16.14 | | 24.49 | | 16.18 | | 28.17 | | ELM [10] | 17.27 | | 37.28 | | 18.47 | | 30.96 | | DBN [15] | 15.21 | | 27.12 | | 14.71 | | 29.88 | | MODBNE [16] | 15.04 | | 25.05 | | 12.51 | | 28.66 | | RNN [19] | 13.44 | | 24.03 | | 13.36 | | 24.02 | | DCNN [32] | 12.61 | | 22.36 | | 12.64 | | 23.31 | | BiLSTM [26] | 13.65 | | 23.18 | | 13.74 | | 24.86 | | Aug+CNN+LSTM [30] | 23.57 | | 20.45 | | 21.17 | | 21.03 | | DAG [35] | 11.96 | | 20.34 | | 12.46 | | 22.43 | | CNN+LSTM w/regression | 14.04 | | 15.15 | | 14.62 | | 21.92 | | CNN+LSTM w/Weibull | 13.98 | | 15.77 | | 15.55 | | 23.05 | |
|
|