Research Article
Developing Deep Survival Model for Remaining Useful Life Estimation Based on Convolutional and Long Short-Term Memory Neural Networks
Table 3
Results of FD001 with two analyses and different TW.
| | Loss function (regression) | Loss function (Weibull) | TW | MAE | RMSE | 2 | Score | MAE | RMSE | 2 | Score |
| 20 | 17.26 | 23.13 | 0.65 | 3,737 | 20.24 | 28.64 | 0.84 | 12,492 | 30 | 15.06 | 19.06 | 0.73 | 1,065 | 15.08 | 21.50 | 0.91 | 2,324 | 40 | 12.81 | 17.89 | 0.79 | 994 | 14.14 | 19.91 | 0.91 | 2,164 | 50 | 11.29 | 14.90 | 0.86 | 431 | 13.14 | 19.23 | 0.91 | 5,861 | 60 | 10.20 | 14.04 | 0.88 | 310 | 13.69 | 20.36 | 0.90 | 31,427 | 70 | 10.80 | 14.33 | 0.87 | 254 | 13.98 | 20.01 | 0.90 | 5,888 | 80 | 10.32 | 14.14 | 0.86 | 198 | 11.63 | 15.45 | 0.93 | 325 | 90 | 10.36 | 14.15 | 0.87 | 200 | 10.50 | 13.98 | 0.94 | 231 | 100 | 9.99 | 13.98 | 0.79 | 190 | 11.17 | 15.02 | 0.91 | 254 | 110 | 9.91 | 13.81 | 0.77 | 183 | 11.03 | 15.43 | 0.90 | 389 | 120 | 9.44 | 13.85 | 0.86 | 161 | 9.79 | 13.73 | 0.93 | 206 |
|
|