Research Article
Developing Deep Survival Model for Remaining Useful Life Estimation Based on Convolutional and Long Short-Term Memory Neural Networks
Table 5
Results of FD003 with two analyses and different TW.
| | Loss function (regression) | Loss function (Weibull) | TW | MAE | RMSE | 2 | Score | MAE | RMSE | 2 | Score |
| 20 | 14.41 | 20.20 | 0.79 | 2,437 | 33.45 | 49.28 | 0.52 | 4,598,400 | 30 | 11.79 | 17.12 | 0.85 | 1,700 | 24.94 | 37.87 | 0.65 | 139,633 | 40 | 11.01 | 16.02 | 0.83 | 1091 | 15.86 | 24.33 | 0.88 | 9,330 | 50 | 11.24 | 15.41 | ā | 679 | 14.45 | 21.82 | 0.90 | 8,597 | 60 | 10.80 | 14.62 | 0.86 | 325 | 14.69 | 23.57 | 0.87 | 32,361 | 70 | 12.08 | 15.94 | 0.80 | 401 | 14.11 | 22.73 | 0.88 | 22,581 | 80 | 11.87 | 16.54 | 0.82 | 379 | 13.69 | 23.01 | 0.87 | 30,087 | 90 | 12.25 | 17.25 | 0.79 | 353 | 14.00 | 23.42 | 0.86 | 39,985 | 100 | 11.88 | 17.53 | 0.78 | 366 | 14.60 | 25.52 | 0.83 | 30,360 | 110 | 12.58 | 19.41 | 0.76 | 463 | 12.21 | 20.98 | 0.89 | 11,536 | 120 | 13.45 | 21.20 | ā | 625 | 9.81 | 15.55 | 0.93 | 672 |
|
|