Research Article

Designing Compact Convolutional Filters for Lightweight Human Pose Estimation

Table 2

Comparisons of results on the MSCOCO validation set.

MethodBackboneInput#ParamsGFLOPs

8-stage hourglass [6]Hourglass25.6M26.266.9
CPN [31]ResNet-5027.0M6.268.4
SimpleBaseline [25]ResNet-5034.0M8.970.488.678.367.177.276.3
HRNet-W32 [5]ResNet-5028.5M12.473.489.580.770.280.179.8
DARK [32]HRNetV1-W4863.6M3.671.989.179.669.27877.9
MobileNetV2 [19]MobileNetV29.6M1.4864.687.472.361.171.270.7
MobileNetV2 1×MobileNetV29.6M3.3367.387.974.362.874.772.9
ShuffleNetV2 [33]ShuffleNetV27.6M1.2859.985.466.356.666.266.4
ShuffleNetV2 1×ShuffleNetV27.6M2.8763.686.570.559.570.769.7
Small HRNetHRNet-W161.3M0.5455.283.762.452.36162.1
Small HRNetHRNet-W161.3M1.215683.86352.462.662.6
Lite-HRNetLite-HRNet-181.1M0.2064.886.77362.170.571.2
Lite-HRNetLite-HRNet-181.1M0.4567.687.87564.573.773.7
MobilePoseNetMobilNetV31.5M0.5566.287.374.263.172.572.4
MobilePoseNetMobilNetV31.5M1.236988.275.965.575.574.9