Research Article
Designing Compact Convolutional Filters for Lightweight Human Pose Estimation
Table 2
Comparisons of results on the MSCOCO validation set.
| Method | Backbone | Input | #Params | GFLOPs | | | | | | |
| 8-stage hourglass [6] | Hourglass | | 25.6M | 26.2 | 66.9 | — | — | — | — | — | CPN [31] | ResNet-50 | | 27.0M | 6.2 | 68.4 | — | — | — | — | — | SimpleBaseline [25] | ResNet-50 | | 34.0M | 8.9 | 70.4 | 88.6 | 78.3 | 67.1 | 77.2 | 76.3 | HRNet-W32 [5] | ResNet-50 | | 28.5M | 12.4 | 73.4 | 89.5 | 80.7 | 70.2 | 80.1 | 79.8 | DARK [32] | HRNetV1-W48 | | 63.6M | 3.6 | 71.9 | 89.1 | 79.6 | 69.2 | 78 | 77.9 | MobileNetV2 [19] | MobileNetV2 | | 9.6M | 1.48 | 64.6 | 87.4 | 72.3 | 61.1 | 71.2 | 70.7 | MobileNetV2 1× | MobileNetV2 | | 9.6M | 3.33 | 67.3 | 87.9 | 74.3 | 62.8 | 74.7 | 72.9 | ShuffleNetV2 [33] | ShuffleNetV2 | | 7.6M | 1.28 | 59.9 | 85.4 | 66.3 | 56.6 | 66.2 | 66.4 | ShuffleNetV2 1× | ShuffleNetV2 | | 7.6M | 2.87 | 63.6 | 86.5 | 70.5 | 59.5 | 70.7 | 69.7 | Small HRNet | HRNet-W16 | | 1.3M | 0.54 | 55.2 | 83.7 | 62.4 | 52.3 | 61 | 62.1 | Small HRNet | HRNet-W16 | | 1.3M | 1.21 | 56 | 83.8 | 63 | 52.4 | 62.6 | 62.6 | Lite-HRNet | Lite-HRNet-18 | | 1.1M | 0.20 | 64.8 | 86.7 | 73 | 62.1 | 70.5 | 71.2 | Lite-HRNet | Lite-HRNet-18 | | 1.1M | 0.45 | 67.6 | 87.8 | 75 | 64.5 | 73.7 | 73.7 | MobilePoseNet | MobilNetV3 | | 1.5M | 0.55 | 66.2 | 87.3 | 74.2 | 63.1 | 72.5 | 72.4 | MobilePoseNet | MobilNetV3 | | 1.5M | 1.23 | 69 | 88.2 | 75.9 | 65.5 | 75.5 | 74.9 |
|
|