Research Article
FA-YOLO: An Improved YOLO Model for Infrared Occlusion Object Detection under Confusing Background
Table 1
Result comparisons between different models.
| Model | Precision (%) | Recall (%) | (%) | F1 (%) | FPS |
| SSD-VGG16 | 78.11 | 74.06 | 76.95 | 76.03 | 59.24 | YOLOv3 | 84.24 | 80.66 | 84.53 | 82.41 | 40.02 | Faster R-CNN-Resnet | 70.76 | 90.74 | 88.30 | 79.51 | 9.35 | YOLOv4 (no transfer) | 82.20 | 74.06 | 79.24 | 77.92 | 40.72 | YOLOv4 (transfer learning) | 89.22 | 85.85 | 90.34 | 87.50 | 41.86 | YOLOv4+NSF | 96.21 | 81.06 | 91.92 | 87.98 | 40.74 | YOLOv4+NSF+dilated CBAM | 98.11 | 80.00 | 92.95 | 88.13 | 35.61 |
|
|