Review Article

The Influence of Big Data Analytics on E-Commerce: Case Study of the U.S. and China

Table 17

Coefficients for Y08a.

ModelUnstandardized coefficientsStandardized coefficientsSig.CorrelationCollinearity statistics
Std. errorBetaZero-orderPartialPartToleranceVIF

1(Constant)196.7919.30121.1590.000
X04-0.2200.023-0.879-9.3830.000-0.879-0.879-0.8791.0001.000

2(Constant)199.9068.73422.8870.000
X04-0.3170.048-1.268-6.6310.000-0.879-0.798-0.5760.2064.844
X684.1751.8280.4372.2840.031-0.6930.4160.1980.2064.844

aDependent variable: Y08, where model 1 is 0.772 and model 2 is 0.811; low VIF values indicate low collinearity; the standardized residuals are approximately normally distributed. X04: searching subject term “E-Commerce” in CNKI (periodical); X68: searching subject term “Artificial Intelligence & Big Data & E-Commerce” in CNKI (periodical); Y08: growth rate of retail e-commerce for China.