Review Article

The Influence of Big Data Analytics on E-Commerce: Case Study of the U.S. and China

Table 21

Lag order selection criteria.

VariableLagLogLRFPEAICSCHQLag order selectionObserved object

X020-162.121NA27223.10013.05013.09813.063U.S.
1-139.23742.1074728.67411.29911.39611.326
2-138.8110.7494955.19911.34511.49111.385
3-138.6250.3135297.00711.41011.60511.464
X690-121.768NA1078.8279.8219.8709.835
1-108.12625.101392.5178.8108.9088.837
2-103.4298.267292.2558.5148.6618.555
3-103.4290.000317.1048.5948.7898.648
X040-175.910NA82037.32014.15314.20214.166China
1-130.32483.8782317.73510.58610.68310.613
2-130.3030.0362508.76010.66410.81110.705
3-130.2780.0432716.55410.74210.93710.796
X700-83.390NA50.0696.7516.8006.765
1-73.00119.11723.6306.0006.0986.027
2-71.2833.02222.3305.9436.0895.983
3-70.8350.75323.3765.9876.1826.041

indicates lag order selected by the criterion. LR: sequential modified LR test statistic (each test at 5% level). FPE: final prediction error; AIC: Akaike information criterion; SC: Schwarz information criterion; HQ: Hannan-Quinn information criterion. Sample: 1990-2017. X02: searching subject term “E-Commerce” in the WoS (Core Collection). X04: searching subject term “E-Commerce” in CNKI (periodical). X69: searching subject term “Quantum Computing” in the WoS (Core Collection). X70: searching subject term “Quantum Computing” in CNKI (periodical).