Research Article

Social-Aware Caching Strategy Based on Joint Action Deep Reinforcement Learning

Algorithm 1

Caching strategy based on a JADQN.
Input: inactive users remaining space: , transmission distance of users: , delay threshold: , the parameter of main network: , the parameter of target network: and read the data from dataset.
Output: the cache hit ratio .
Initialize:, memory size: , leaning rate , explore rate: , discount rate: , the number of iterations:, the number of minibatches:.
ifthen
   for episode=1do
     Update ;
     for t =do
      Random generation probability:
        if:
      Randomly generated action:
        else:
          Obtained a joint action by according to
        end if
      Observe
     Store the transactionin replay memory , uniformly sample minibatches from
     Optimize error between -network and learning targets, using variant of stochastic gradient descent
     Each step updates the parameters of target -network
     end for
   end for
end if