Research Article
Novel Stream Ciphering Algorithm for Big Data Images Using Zeckendorf Representation
Table 1
The probability of the
-runs that appear in
(
).
| | | | | Runs | Probability | Runs | Probability | Runs | Probability | Runs | Probability |
| (0) | 0.525 | (00) | 0.201 | (000) | 0.078 | (0000) | 0.030 | (1) | 0.475 | (01) | 0.322 | (001) | 0.124 | (0001) | 0.047 | | | (10) | 0.322 | (010) | 0.225 | (0010) | 0.089 | | | (11) | 0.155 | (011) | 0.096 | (0011) | 0.036 | | | | | (100) | 0.124 | (0100) | 0.086 | | | | | (101) | 0.197 | (0101) | 0.138 | | | | | (110) | 0.096 | (0110) | 0.059 | | | | | (111) | 0.060 | (0111) | 0.037 | | | | | | | (1000) | 0.047 | | | | | | | (1001) | 0.076 | | | | | | | (1010) | 0.136 | | | | | | | (1011) | 0.060 | | | | | | | (1100) | 0.038 | | | | | | | (1101) | 0.058 | | | | | | | (1110) | 0.037 | | | | | | | (1111) | 0.023 |
|
|