Research Article
Applying Deep Learning Technologies to Evaluate the Patent Quality with the Collaborative Training
Table 5
PQE-MT layer information.
| Number of layers | Type | Output shape | Number of parameters |
| 0 | Text input layer | (None, 200) | 0 | 1 | Embedding layer | (None, 200, 768) | 17999616 | 2 | Bidirectional LSTM_1 | (None, 200, 160) | 543360 | 3 | Bidirectional LSTM_2 | (None, 200, 160) | 154240 | 4 | Attention | (None, 160) | 32400 | 5 | Number input layer | (None, 132) | 0 | 6 | Concatenate layer | (None, 292) | 0 | 7/9/11 | Dense layer_1/2/3 | (None, 512/128/32) | 150016 | 8/10/12 | Dropout layer_1/2/3 | (None, 512/128/32) | 65664 | 13 | CRF layer | (None, 200, 4) | 4128 | 14 | Softmax layer | (None, 8) | 668 |
|
|