Research Article
Applying Deep Learning Technologies to Evaluate the Patent Quality with the Collaborative Training
Table 6
Final results of different migration parts.
| Migration layer | Training set (microavg/macroavg) | Test set (microavg/macroavg) | Precision | Recall | -score | Precision | Recall | -score |
| 0-14 | 0.85 | 0.70 | 0.85 | 0.68 | 0.85 | 0.69 | 0.61 | 0.38 | 0.60 | 0.44 | 0.60 | 0.41 | 2-14 | 0.83 | 0.70 | 0.83 | 0.63 | 0.83 | 0.66 | 0.66 | 0.43 | 0.65 | 0.46 | 0.65 | 0.44 | 3-14 | 0.82 | 0.66 | 0.82 | 0.65 | 0.82 | 0.65 | 0.66 | 0.61 | 0.66 | 0.54 | 0.66 | 0.57 | 7-14 | 0.78 | 0.66 | 0.77 | 0.60 | 0.77 | 0.63 | 0.60 | 0.44 | 0.60 | 0.38 | 0.60 | 0.41 | 9-14 | 0.60 | 0.43 | 0.60 | 0.39 | 0.60 | 0.41 | 0.58 | 0.44 | 0.58 | 0.36 | 0.58 | 0.40 | 11-14 | 0.53 | 0.37 | 0.53 | 0.34 | 0.53 | 0.35 | 0.52 | 0.42 | 0.52 | 0.35 | 0.52 | 0.38 |
|
|