Research Article
Applying Deep Learning Technologies to Evaluate the Patent Quality with the Collaborative Training
Table 9
Data transfer learning results of 2208 Chinese patent English text data after active learning expansion.
| Category | Training set | Test set | Precision | Recall | -score | Support | Precision | Recall | -score | Support |
| 1 | 0.93 | 0.96 | 0.95 | 676 | 0.93 | 0.83 | 0.88 | 35 | 2 | 0.85 | 0.71 | 0.77 | 404 | 0.88 | 0.78 | 0.82 | 18 | 3 | 0.79 | 0.85 | 0.81 | 506 | 0.74 | 0.81 | 0.77 | 21 | 4 | 0.59 | 0.77 | 0.67 | 258 | 0.39 | 0.70 | 0.50 | 10 | 5 | 0.61 | 0.64 | 0.62 | 154 | 0.50 | 0.38 | 0.43 | 8 | 6 | 0.41 | 0.54 | 0.47 | 69 | 0.33 | 0.33 | 0.33 | 3 | 7 | 0.63 | 0.54 | 0.58 | 87 | 0.33 | 0.67 | 0.45 | 3 | 8 | 0.78 | 0.37 | 0.50 | 54 | 1.00 | 0.50 | 0.67 | 2 | Microavg | 0.79 | 0.80 | 0.79 | 2208 | 0.74 | 0.74 | 0.74 | 100 | Macroavg | 0.70 | 0.67 | 0.68 | 2208 | 0.64 | 0.63 | 0.63 | 100 |
|
|