Research Article
Aspect-Level Sentiment Analysis Approach via BERT and Aspect Feature Location Model
Table 4
Some examples of aspect-based sentiment analysis.
| | Word embedding | Models | Laptop | Restaurant | Twitter | | Accuracy | Macro-F1 | Accuracy | Macro-F1 | Accuracy | Macro-F1 |
| | Embedding | LSTM | 0.6144 | 0.4401 | 0.7304 | 0.533 | 0.6474 | 0.6058 | | ATAE-LSTM | 0.6019 | 0.4909 | 0.7375 | 0.5725 | 0.6864 | 0.6501 | | Cabasc | 0.6301 | 0.5297 | 0.7241 | 0.5245 | 0.6171 | 0.5657 | | IAN | 0.6191 | 0.4671 | 0.7268 | 0.4897 | 0.6618 | 0.6251 | | MGAN | 0.5878 | 0.4264 | 0.7179 | 0.4974 | 0.6373 | 0.5856 | | MemNet | 0.7915 | 0.7576 | 0.8241 | 0.7313 | 0.6936 | 0.6772 | | RAM | 0.5956 | 0.4308 | 0.7152 | 0.4656 | 0.6358 | 0.5998 | | TNet | 0.7022 | 0.6404 | 0.7688 | 0.6269 | 0.6994 | 0.6827 |
| | BERT | IAN-BERT | 0.7696 | 0.7179 | 0.808 | 0.722 | 0.7269 | 0.7048 | | AOA-BERT | 0.7774 | 0.7407 | 0.7341 | 0.7173 | 0.7341 | 0.7173 | | MemNet-BERT | 0.7915 | 0.7576 | 0.8241 | 0.7313 | 0.6936 | 0.6772 | | AEN-BERT | 0.7947 | 0.7544 | 0.8125 | 0.7069 | 0.7168 | 0.7052 | | BERT-base | 0.768 | 0.7288 | 0.8375 | 0.7613 | 0.7442 | 0.7271 | | LCF-bert | 0.7837 | 0.7441 | 0.8509 | 0.7894 | 0.7254 | 0.7113 | | ALM-BERT | 0.8009 | 0.7603 | 0.8545 | 0.795 | 0.7413 | 0.73 |
|
|