Research Article
ACEA: A Queueing Model-Based Elastic Scaling Algorithm for Container Cluster
| Input: achievement rate of historical tasks , task processing interval , number of containers in the current cluster . | | Output: indicator information for container cluster, volume of autoscaling, mode of adaptive scaling. | | 1. global var , Fitness; //Fitness: real-time comprehensive resource utilization rate of cluster. | | 2. const var , , ;// : maximum waiting time of tasks. | | 3. define func getConfig(): ; | | 4. Input | | 5. par[Pnum]= | | 6. PSOInit(Pnum): ParticleInit(Pnum), ParticleEvaluate(); | | 7. Fitness = Wq(getUall(s), getUlimit()); | | 8. PSORun(): | | 9. For each par. | | 10. ParticleUpdate(); | | 11. ParticleEvaluate(); | | 12. End For; | | 13. For Iteration times do. | | 14. If (): | | 15. Contract(service); | | 16. End if; | | 17. If(()|| ): | | 18. Expand(service); | | 19. End if; | | 20. If(): | | 21. PSOshowresult(); | | 22. End if; | | 23. End For; |
|