Research Article
Attention Mechanism-Based CNN-LSTM Model for Wind Turbine Fault Prediction Using SSN Ontology Annotation
Table 4
Experimental results of the model on the dataset of No. 21 and No. 4 wind turbine.
| Algorithm | Wind turbine icing fault dataset | Wind turbine yaw fault dataset | No. 21 wind turbine | No. 4 wind turbine | | | | | | | | |
| CLA | 0.7492 | 0.8171 | 0.7421 | 0.7591 | 0.7709 | 0.8143 | 0.7429 | 0.7737 | LSTM | 0.7242 | 0.7279 | 0.7163 | 0.7220 | 0.7455 | 0.8000 | 0.6546 | 0.7201 | RNN | 0.6793 | 0.6793 | 0.6792 | 0.6793 | 0.7248 | 0.7637 | 0.6511 | 0.7029 | XGBoost | 0.7038 | 0.7120 | 0.6847 | 0.6981 | 0.7038 | 0.7120 | 0.6847 | 0.6981 |
|
|