Research Article
Attention Mechanism-Based CNN-LSTM Model for Wind Turbine Fault Prediction Using SSN Ontology Annotation
Table 7
Experimental results after feature screening.
| Algorithm | Wind turbine icing fault dataset | Wind turbine yaw fault dataset | No. 21 wind turbine | No. 4 wind turbine | | | | | | | | |
| CLA | 0.7776 | 0.7899 | 0.7565 | 0.7728 | 0.8622 | 0.8228 | 0.9234 | 0.8702 | LSTM | 0.7664 | 0.7310 | 0.7431 | 0.7531 | 0.8401 | 0.8025 | 0.9023 | 0.8495 | RNN | 0.6855 | 0.6571 | 0.7756 | 0.7115 | 0.7751 | 0.7912 | 0.7475 | 0.7687 | XGBoost | 0.7345 | 0.7286 | 0.7571 | 0.7426 | 0.7345 | 0.7286 | 0.7571 | 0.7426 |
|
|