Research Article
A Real-Time and Long-Term Face Tracking Method Using Convolutional Neural Network and Optical Flow in IoT-Based Multimedia Communication Systems
Table 4
Smoothness values with respect to Equation (
5) for MDNet, MTCNN, and C-OF on four videos with different conditions.
| Method | Active camera | Clip 1 | Clip 2 | Clip 3 | Clip 4 | Clip 5 |
| MDNet | 0.152312 | 0.146476 | 0.303847 | 0.270567 | 0.088137 | MTCNN | 1.071629 | 0.683341 | 0.650429 | 0.581538 | 0.656829 | C-OF (ours) | 0.005137 | 0.011361 | 0.010636 | 0.005119 | 0.009432 |
| Method | Active human | Clip 1 | Clip 2 | Clip 3 | Clip 4 | Clip 5 | MDNet | 0.678967 | 0.491966 | 0.586164 | 0.699405 | 0.402297 | MTCNN | 1.145627 | 0.847167 | 0.93854 | 0.977966 | 0.971969 | C-OF (ours) | 0.001103 | 0.003444 | 0.001304 | 0.004872 | 0.021336 |
| Method | Static human | Clip 1 | Clip 2 | Clip 3 | Clip 4 | Clip 5 | MDNet | 0.393428 | 0.43518 | 0.444789 | 0.521464 | 0.612867 | MTCNN | 0.5484 | 0.673217 | 0.729767 | 0.625556 | 0.566896 | C-OF (ours) | 0.004908 | 0.000072 | 0.0 | 0.000008 | 0.0 |
| Method | Active illumination | Clip 1 | Clip 2 | Clip 3 | Clip 4 | Clip 5 | MDNet | 0.417814 | 0.3991 | 0.564509 | 0.531881 | 0.48117 | MTCNN | 1.020253 | 0.616373 | 0.805697 | 1.110985 | 1.045736 | C-OF (ours) | 0.010921 | 0.000995 | 0.0 | 0.007117 | 0.000901 |
|
|