Research Article
LCHI: Low-Order Correlation and High-Order Interaction Integrated Model Oriented to Network Intrusion Detection
Table 4
The value distributions of the AWID, NSL-KDD, UNSW-NB15, CICIDS 2017, CICIDS 2018, and DAPT 2020 datasets.
| | Dataset | Attack type | Training set | Testing set |
| | AWID | Normal | 326311 | 104657 | | Injection | 13220 | 4294 | | Impersonation | 9853 | 3083 | | Flooding | 9731 | 3081 |
| | NSL-KDD | Normal | 67343 | 9711 | | DoS | 45927 | 7458 | | Probe | 11656 | 2421 | | R2L | 995 | 2750 | | U2R | 52 | 200 |
| | UNSW-NB15 | Normal | 56000 | 37000 | | Generic | 40000 | 18871 | | Exploit | 33393 | 11132 | | Fuzzers | 18184 | 6062 | | DoS | 12264 | 4089 | | Reconnaissance | 10491 | 3496 | | Analysis | 2000 | 677 | | Backdoor | 1746 | 583 | | Shellcode | 1133 | 378 | | Worm | 130 | 44 |
| | CICIDS 2017 | Benign | 65093 | 32625 | | DDoS | 85404 | 42623 |
| | CICIDS 2018 | Benign | 445212 | 222414 | | DoS-SlowHTTPTest | 128779 | 64581 |
| | DAPT 2020 | Benign | 6003 | 2852 | | Establish foothold | 5621 | 2967 | | Reconnaissance | 34 | 10 |
|
|