Research Article
[Retracted] Multimodal Emotion Recognition Model Based on a Deep Neural Network with Multiobjective Optimization
Table 5
Algorithm performance comparison.
| | Algorithm | Accuracy | |
| | Single modal emotion recognition technology | DCNN | 0.712 | 0.05 | | DSCNN | 0.691 | 0.0535 | | ISMS_ALA | 0.725 | 0.0245 |
| | Best value | NSGA-III | 0.7405 | 0.0085 | | HypE | 0.7321 | 0.0107 | | PEAS | 0.7538 | 0.0034 | | MOEA/DD | 0.7416 | 0.0098 |
| | Worst value | NSGA-III | 0.6795 | 0.0489 | | HypE | 0.6615 | 0.0662 | | PEAS | 0.6972 | 0.0261 | | MOEA/DD | 0.6726 | 0.0427 |
| | Mean value | NSGA-III | 0.7169 | 0.0261 | | HypE | 0.7143 | 0.0328 | | PEAS | 0.7268 | 0.0178 | | MOEA/DD | 0.7178 | 0.0247 |
|
|