Research Article

EAWNet: An Edge Attention-Wise Objector for Real-Time Visual Internet of Things

Table 4

Item FPS and AP of different object detectors.

MethodBackboneSizeFPSAP
(%)
AP50
(%)
AP75
(%)
APs
(%)
APm
(%)
APl
(%)

YOLOv4: optimal speed and accuracy of object detection [19]
YOLOv4CSPDarknet-534163035.657.838.217.339.252.1
YOLOv4CSPDarknet-535122237.960.041.919.841.549.8
YOLOv4CSPDarknet-536081638.260.942.521.742.147.4

Learning rich features at high speed for single-shot object detection [15]
LRFVGG-1630039.026.846.729.48.330.342.6
LRFResNet-10130036.229.250.032.28.633.245.9
LRFVGG-1651227.931.951.733.814.735.444.3
LRFResNet-10151219.732.653.235.115.238.045.4

Receptive field block net for accurate and fast object detection [20]
RFBNetVGG-1630032.025.344.527.16.927.241.3
RFBNetVGG-1651222.529.250.131.211.732.442.5
RFBNet-EVGG-1651217.329.650.731.512.931.842.7

YOLOv3: an incremental improvement [18]
YOLOv3Darknet-533202723.346.825.17.225.838.4
YOLOv3Darknet-534162326.450.627.810.328.238.2
YOLOv3Darknet-536081428.053.029.613.730.736.9
YOLOv3-SPPDarknet-536081631.256.233.515.633.441.4

CenterMask: real-time anchor-free instance segmentation [21]
CenterMask-LiteMobileNetV2-FPN600x2725.59.227.136.3
CenterMask-LiteVoVNetV-19-FPN600x2031.214.933.041.2
CenterMask-LiteVoVNetV-39-FPN600x1235.717.838.648.5

EfficientDet: scalable and efficient object detection [22]
EfficientDet-D0Efficient-B05122629.047.231.27.333.346.2
EfficientDet-D1Efficient-B16402334.653.837.513.139.851.0
EfficientDet-D2Efficient-B27681638.257.341.217.942.453.6
EfficientDet-D3Efficient-B38961341.360.644.621.645.155.1

EAWNet: an Edge Attention-wise Convolutional Neural Network for real-time object detection
EAWNetEAWNet4163136.159.339.118.540.053.3
EAWNetEAWNet5122438.860.842.720.842.450.7
EAWNetEAWNet6081739.762.243.323.142.848.6

FPS, AP, AP50, AP75, APs, APm, and APl represent the frame per second, average precision, reach to 50% average precision, reach to 75%, average precision, and average precision for small-, medium-, and large-scale objects, respectively.