Research Article
Multiscale Bidirectional Input Convolutional and Deep Neural Network for Human Activity Recognition
Table 1
MultiConv2D & ComplexConv1D network parameters. Each layer of convolution passes through the BN layer; the selected activation function is ReLU.
| MultiConv2D | ComplexConv1D | Layer name | Kernel size, filters/stride, pad | Layer name | Kernel size, filters/stride, pad |
| Conv_1 MaxPooling | , , same | Conv1d_1 | , /1, same | Conv_2 | ,, same | Conv1d_2 | , /1, same | Conv_3 | , , same | Conv1d_3 | , /1, same | Conv_4 | , , same | GlobalAveragePooling1D | GlobalAveragePooling2D | | |
|
|