Research Article
Recognition for Human Gestures Based on Convolutional Neural Network Using the Off-the-Shelf Wi-Fi Routers
Table 1
Hierarchical structure of proposed 1D-CNN.
| Number | Layer name | Function | Parameter setting |
| 1 | Convolutional layer | Extracting local features | Number of convolutional kernels: 16 Size of convolutional kernel: 3 | 2 | Pooling layer | Spatially dimension reduction | Number of pooling kernels: 16 Size of pooling kernel: 3 | 3 | Convolutional layer | Extracting local features | Number of convolutional kernels: 32 Size of convolutional kernel: 3 | 4 | Pooling layer | Spatially dimension reduction | Number of pooling kernels: 16 Size of pooling kernel: 3 | 5~7 | Convolutional layer | Extracting local features | Number of convolutional kernels: 64 Size of convolutional kernel: 3 | 8 | Pooling layer | Spatially dimension reduction | Number of pooling kernels: 16 Size of pooling kernel: 3 | 9 | Flat layer | Realizing the transition from convolution layer to full connection layer | | 10 | Fully connected layer | | Output size: 64 | 11 | Fully connected layer | Classification and recognition using SVM classifier | Output size: 3 |
|
|