Research Article

Federated Learning Model with Adaptive Differential Privacy Protection in Medical IoT

Algorithm 3

Differential private federated learning (DP-FL).
Input:
  Number of users , rounds of communication , privacy parameters set , number of users participating in each epoch of communication .
Output:
  The weight parameters of the server model.
  //Server executes.
1: Random initialize
2: for do
3:    random select n users.
4:   for in parallel do
5:    
6:    Send the updated parameters to Server
7:   end for
8:   
9:   
10:   The server broadcasts global parameters to all participants
11: end for
12: return
  //Users execute
13: function
14:   
15:   DPAGD-DNN
16:   
17: return