Research Article
Sparse Representation Classifier Embedding Subspace Mapping and Support Vector for Facial Expression Recognition
| Input: labeled training data , regularization parameters ,,,, and . | | Output: the optimal variables {} | | 1. Initialize the dictionary using K-SVD algorithm | | | | While not convergence or | | 2. Compute the similarity matrix via Equation (4); | | 3. Tune the mapping matrix via Equations (10)–(15); | | 4. Tune the dictionary via Equation (17); | | 5. Tune sparse coefficient matrix via Equation (20); | | 6. Tune the via Equation (21); | | | | end while |
|