Research Article

Sparse Representation Classifier Embedding Subspace Mapping and Support Vector for Facial Expression Recognition

Algorithm 1

SRC-SM-SV algorithm
Input: labeled training data , regularization parameters ,,,, and .
Output: the optimal variables {}
1. Initialize the dictionary using K-SVD algorithm
  
While not convergence or
2. Compute the similarity matrix via Equation (4);
3. Tune the mapping matrix via Equations (10)–(15);
4. Tune the dictionary via Equation (17);
5. Tune sparse coefficient matrix via Equation (20);
6. Tune the via Equation (21);
  
end while