Research Article
Sparse Representation Classifier Embedding Subspace Mapping and Support Vector for Facial Expression Recognition
Input: labeled training data , regularization parameters ,,,, and . | Output: the optimal variables {} | 1. Initialize the dictionary using K-SVD algorithm | | While not convergence or | 2. Compute the similarity matrix via Equation (4); | 3. Tune the mapping matrix via Equations (10)–(15); | 4. Tune the dictionary via Equation (17); | 5. Tune sparse coefficient matrix via Equation (20); | 6. Tune the via Equation (21); | | end while |
|