Research Article

Cognitive Covert Traffic Synthesis Method Based on Generative Adversarial Network

Algorithm 1

WCCGAN, our proposed algorithm.
parameters: learning rate (α) =0.01; alpha(γ) =0.99; batch size (m); change threshold(λ) =1.5;
require: generator parameters (); discriminator parameters (); generator loss change rate (); discriminator loss change rate(); Wasserstein Distance change rate(); Wasserstein Distance(); Functional Equivalent(FE); Cognitive Equivalent(CE);
1: while has not converged do
2: For I = 1,….,m Do
3: Covert traffic data
4: Noise sample ; Interpolation sampling of samples
5:
6:
7: If>Then // dynamic parameter update strategies
8:  = α · RMSProp (γ,)
9: Else
10:  = α · RMSProp (γ,)
11: end
12: If
13: 
14: Else ifThen
15: 
16: Else ifThen
17: 
18: End for
19: If
20: 
21: Else
22: End while