Research Article

Optimized Fault Diagnosis Algorithm under GAN and CNN Hybrid Model

Table 2

Improved generative adversarial network model parameters.

Neural network nameLayer (operation)Input formatOutput format

Generator networkFully connected layer[None,128][None,256]
Batch normalization (batch_norm)[None,256][None,256]
Nonlinear activation (ReLU)[None,256][None,256]
Deconvolution layer 1 (conv2d_transpose)[None,2,2,64][None,4,4,16]
Batch normalization (batch_norm)[None,4,4,16][None,4,4,16]
Nonlinear activation (ReLU)[None,4,4,16][None,4,4,16]
Deconvolution layer 2 (conv2d_transpose)[None,4,4,16][None,8,8,1]
Nonlinear activation (tanh)[None,8,8,1][None,8,8,1]

Discriminator networkConvolutional layer 1 (conv2d)[None,8,8,1][None,4,4,32]
Batch normalization (batch_norm)[None,4,4,32][None,4,4,32]
Nonlinear activation (LeakyReLU)[None,4,4,32][None,4,4,32]
Convolutional layer 2 (conv2d)[None,4,4,32][None,2,2,64]
Batch normalization (batch_norm)[None,2,2,64][None,2,2,64]
Nonlinear activation (LeakyReLU)[None,2,2,64][None,2,2,64]
Fully connected layer[None,256][None,7]
Softmax[None,7][None,7]