Research Article
Application of a New Feature Generation Algorithm in Intrusion Detection System
Table 9
Subclass experiments on the UNSW_NB15 dataset.
| | Precision | Recall | F1-score | Support |
| Normal | 1.0000 | 1.0000 | 1.0000 | 56000 | Reconnaissance | 1.0000 | 1.0000 | 1.0000 | 10491 | Backdoor | 1.0000 | 1.0000 | 1.0000 | 1746 | DoS | 1.0000 | 1.0000 | 1.0000 | 12264 | Exploits | 1.0000 | 1.0000 | 1.0000 | 33393 | Analysis | 1.0000 | 1.0000 | 1.0000 | 2000 | Fuzzers | 1.0000 | 1.0000 | 1.0000 | 18184 | Worms | 1.0000 | 1.0000 | 1.0000 | 130 | Shellcode | 1.0000 | 1.0000 | 1.0000 | 1133 | Generic | 1.0000 | 1.0000 | 1.0000 | 40000 | Accuracy | ā | ā | 1.0000 | 175341 | Macro avg. | 1.0000 | 1.0000 | 1.0000 | 175341 | Weighted avg. | 1.0000 | 1.0000 | 1.0000 | 175341 |
|
|