Research Article
Formal Modelling of PBFT Consensus Algorithm in Event-B
Event prepare | Anym_c m_f send rec | Where | @grd1 send∈NODES∖{pre} | @grd2 rec∈NODES | @grd3 send≠rec | @grd4 m_c∈ℕ×(ℕ×value) | @grd5 m_c∈G_p(send) | @grd6 prj1(prj2(m_c))−n∈0‥H | @grd7 m_f∈ℕ×(ℕ×value) | @grd8 prj1(m_f)=prj1(m_c) | @grd9 prj2(prj2(m_f))∈Faulty_value | @grd10 prj1(prj2(m_f))−n∈0‥H | @grd11 send∈dom(G_pre(rec)) | @grd12 m_f∉G_pre(rec)(send) | @grd13 m_c∉G_pre(rec)(send) | Then | @act1 G_pre≔{TRUE↦G_pre<+{rec↦G_pre(rec)∪{send↦{m_c}}}, | FALSE↦G_pre<+{rec↦G_pre(rec)∪{send↦{m_f}}}}(bool(send∈corr)) | End |
|