Theorem |
@theorem 1: G∈NODES×{{MM↦RR}}∧ |
CORR∈CORR∧ |
Card({n∣n∈corr∧G(n)(m)=∅})≠∅∧≠∅∧ |
G_pre∈NODES→(NODES→ℙ(ℕ×(ℕ×value))) ∧ |
G_r∈NODES→(NODES→ℙ(ℕ×(ℕ×value))) ∧ |
G_pre_check∈NODES→ℙ(ℕ×(ℕ×value)) ∧ |
G_r_check∈NODES→ℙ(ℕ×(ℕ×value)) |
⇒ |
(node2∈NODES∧ |
m2∈ℕ×(ℕ×value) ∧ |
message2∈message∧ contents(message2)=prj2(m2) ∧ |
m2∈G_r_check(node2) ∧ |
Cache[corr] ≠ ∅∧ |
message2∈inter(cache[corr]) ∧ |
message2∉dom(G(node2)) ∧ prj1(prj2(m2))=n)) |
@theorem2 G∈NODES×{{MM↦RR}}∧ |
CORR∈CORR∧ |
Card({n∣n∈corr∧G(n)(m)=∅})≠∅∧ |
G_pre∈NODES→(NODES⇸ℙ(ℕ×(ℕ×value))) ∧ |
G_r∈NODES→(NODES→ℙ(ℕ×(ℕ×value))) ∧ |
G_pre_check∈NODES→ℙ(ℕ×(ℕ×value)) ∧ |
G_r_check∈NODES→ℙ(ℕ×(ℕ×value)) |
⇒ |
(node∈NODES∧ |
node1∈corr∧ |
m∈cache(node) ∧ |
m∉dom(G(node)) ∧ |
prj1(contents(m))<n∧ |
m∈dom(G(node1))) |
@theorem3 G∈NODES×{{MM↦RR}}∧ |
CORR∈CORR ∧ |
Card()=∅ ∧ |
G_pre∈NODES→(NODES→ℙ(ℕ×(ℕ×value))) ∧ |
G_r∈NODES→(NODES→ℙ(ℕ×(ℕ×value))) ∧ |
G_pre_check∈NODES→ℙ(ℕ×(ℕ×value)) ∧ |
G_r_check∈NODES→ℙ(ℕ×(ℕ×value)) |
⇒ |
3({i,j·i∈NODES∧j∈dom(G(i))∧(G(i))(j)=True_execute(j∣i})≥2(NODES)+1 |