Research Article
Benchmarking the Robustness of Object Detection Based on Near-Real Military Scenes
Table 3
mAP value of different algorithms on various scenes.
| mAP | Run close | Slightly low light | Low light | Mist | Dense fog | Rain | Snow | Middle distance | Long distance | Oblique shot | Angle 1 | Angle 2 | Angle 3 |
| Faster RCNN | 0.555 | 0.553 | 0.597 | 0.677 | 0.470 | 0.568 | 0.602 | 0.082 | 0.000 | 0.369 | 0.784 | 0.485 | 0.917 | RetinaNet | 0.671 | 0.670 | 0.675 | 0.622 | 0.441 | 0.695 | 0.659 | 0.080 | 0.005 | 0.284 | 0.763 | 0.482 | 0.924 | ATSS | 0.499 | 0.447 | 0.379 | 0.460 | 0.275 | 0.429 | 0.424 | 0.040 | 0.000 | 0.299 | 0.755 | 0.558 | 0.817 | FoveaBox | 0.550 | 0.536 | 0.548 | 0.575 | 0.555 | 0.506 | 0.567 | 0.049 | 0.030 | 0.378 | 0.695 | 0.490 | 0.896 | GFocal Loss | 0.508 | 0.524 | 0.593 | 0.652 | 0.398 | 0.464 | 0.588 | 0.040 | 0.024 | 0.352 | 0.675 | 0.475 | 0.920 | PAFPN | 0.598 | 0.627 | 0.677 | 0.644 | 0.501 | 0.596 | 0.648 | 0.088 | 0.030 | 0.334 | 0.775 | 0.484 | 0.910 | RepPoints | 0.563 | 0.593 | 0.629 | 0.640 | 0.582 | 0.608 | 0.625 | 0.243 | 0.030 | 0.428 | 0.725 | 0.584 | 0.898 |
|
|