Research Article
Optimizing the Prognostic Model of Cervical Cancer Based on Artificial Intelligence Algorithm and Data Mining Technology
Table 1
Clinicopathological characteristics of cervical cancer patients.
| Characteristics | Groups | Patients | Total (9) | Training dataset () | Validation dataset () |
| Age at initial diagnosis | Median | 46.5 | 47 | 46 | Range | 20-88 | 24-81 | 20-88 | <50 | 177 | 102 (57.63) | 75 (42.37) | ≥50 | 122 | 78 (63.93) | 44 (36.07) | FIGO stage | I | 158 | 96 (60.76) | 62 (39.24) | II | 5 | 3 (60.00) | 2 (40.00) | IIA | 21 | 13 (61.90) | 8 (38.10) | IIB | 43 | 24 (55.81) | 19 (44.19) | III | 44 | 23 (52.27) | 21 (47.73) | IV | 21 | 15 (71.43) | 6 (28.57) | Unknown | 7 | 6 (85.71) | 1 (14.29) | Histological type | SCC | 247 | 142 (57.49) | 105 (42.51) | Adenocarcinoma | 46 | 33 (71.74) | 13 (28.26) | Adenosquamous | 6 | 5 (83.33) | 1 (16.67) | Histologic grade | G1 | 16 | 8 (50.00) | 8 (50.00) | G2 | 131 | 78 (59.54) | 53 (40.46) | G3 | 120 | 71 (59.17) | 49 (40.83) | Others | 32 | 23 (71.88) | 9 (28.12) | Neoplasm statue | Tumor free | 186 | 112 (60.22) | 74 (39.78) | With tumor | 71 | 45 (63.38) | 26 (36.62) | Unknown | 42 | 23 (54.76) | 19 (45.24) |
|
|
G: grade; SCC: squamous cell carcinoma. Values are shown as (%) unless otherwise specified. |