Research Article

Optimizing the Prognostic Model of Cervical Cancer Based on Artificial Intelligence Algorithm and Data Mining Technology

Table 1

Clinicopathological characteristics of cervical cancer patients.

CharacteristicsGroupsPatients
Total (9)Training dataset ()Validation dataset ()

Age at initial diagnosisMedian46.54746
Range20-8824-8120-88
<50177102 (57.63)75 (42.37)
≥5012278 (63.93)44 (36.07)
FIGO stageI15896 (60.76)62 (39.24)
II53 (60.00)2 (40.00)
IIA2113 (61.90)8 (38.10)
IIB4324 (55.81)19 (44.19)
III4423 (52.27)21 (47.73)
IV2115 (71.43)6 (28.57)
Unknown76 (85.71)1 (14.29)
Histological typeSCC247142 (57.49)105 (42.51)
Adenocarcinoma4633 (71.74)13 (28.26)
Adenosquamous65 (83.33)1 (16.67)
Histologic gradeG1168 (50.00)8 (50.00)
G213178 (59.54)53 (40.46)
G312071 (59.17)49 (40.83)
Others3223 (71.88)9 (28.12)
Neoplasm statueTumor free186112 (60.22)74 (39.78)
With tumor7145 (63.38)26 (36.62)
Unknown4223 (54.76)19 (45.24)

G: grade; SCC: squamous cell carcinoma. Values are shown as (%) unless otherwise specified.