Research Article
Research on Carbon Foam Image Segmentation Based on Deep Learning
Table 3
The network training hyperparameters and experimental results.
| Network | Epoch | | | IoU (%) | acc_carbon (%) |
| Deep-Res-MixAttention(Ours) | 175 | 0.7543 | 0.6851 | 91.05 | 88.31 | U-Net [22] (C1) | 215 | 0.6785 | 0.7112 | 66.21 | 65.08 | Res18-Unet(C2) | 155 | 0.7435 | 0.7125 | 72.11 | 71.12 | Res18-Unet+SEBlock [32] (C3) | 198 | 0.7714 | 0.7781 | 75.25 | 73.15 | Res18-Unet+CBAMBlock [33] (C4) | 187 | 0.7321 | 0.7812 | 76.32 | 74.98 | Res18-Unet+ECABlock [34] (C5) | 190 | 0.7452 | 0.6993 | 78.25 | 75.45 | Res50-Unet+SEBlock (C6) | 185 | 0.7931 | 0.7551 | 82.81 | 84.32 | Res50-Unet+CBAMBlock (C7) | 195 | 0.7812 | 0.7852 | 85.62 | 86.51 | AlexNet [35] (C8) | 400 | 0.7125 | 0.7581 | 52.14 | 55.81 | DenseNet [36] (C9) | 45 | 0.7751 | 0.7332 | 74.21 | 72.51 | Xception [37] (C10) | 35 | 0.6325 | 0.7351 | 53.56 | 54.31 | Mask RCNN [19] (C11) | 40 | 0.7451 | 0.6999 | 68.48 | 66.82 |
|
|