Research Article
BERT-BiGRU Intelligent Classification of Metro On-Board Equipment Faults Based on Key Layer Fusion
Table 4
The classification effect of different classifiers on the data set.
| Number | Method | Precision | Recall | -score |
| 1 | Fasttext | 0.8147 | 0.8294 | 0.8219 | 2 | CNN | 0.8213 | 0.8272 | 0.8142 | 3 | BiLSTM | 0.8469 | 0.8267 | 0.8367 | 4 | BiGRU | 0.8454 | 0.8263 | 0.8357 | 5 | 2-BERT | 0.8777 | 0.8859 | 0.8818 | 6 | ALBERT-BiLSTM | 0.9106 | 0.9041 | 0.9033 | 7 | ALBERT-BiGRU | 0.9064 | 0.9078 | 0.9071 | 8 | 2-BERT-BIGRU | 0.9137 | 0.9087 | 0.9112 | 9 | 4-BERT-BiGRU | 0.9109 | 0.9220 | 0.9164 | 10 | 8-BERT-BiGRU | 0.9162 | 0.9265 | 0.9213 | 11 | 12-BERT-BiGRU | 0.9203 | 0.9293 | 0.9248 | 12 | The model proposed in paper | 0.9231 | 0.9314 | 0.9272 |
|
|