Research Article

A Framework for Identification and Classification of IoT Devices for Security Analysis in Heterogeneous Network

Table 3

Nonoptimal hyperparameter list.

First deep neural network
Input layer with activation function22 neurons
Total hidden layers3 hidden layers
First unseen (hidden) layer using the best activation function, Rectified Linear Unit (ReLu)200 neurons
Second unseen (hidden) layer using the best activation function, Rectified Linear Unit (ReLu)300 neurons
Third first unseen (hidden) layer using the best activation function, Rectified Linear Unit (ReLu)100 neurons
Output layer with SoftMax activation function2 neurons
Learning rate (LR)0.01
Decay, momentum, 0.9
Loss, optimizermean_squared_error, sgd
Epochs99
Batch_size35

Second deep neural network
Input layer with activation function22 neurons
Total hidden layers3 hidden layers
First unseen layer using a best activation function, Rectified Linear Unit (ReLu)100 neurons
Second unseen (hidden) layer using a best activation function, Rectified Linear Unit (ReLu)200 neurons
Third first unseen (hidden) layer using a best activation function, Rectified Linear Unit (ReLu)100 neurons
Output layer with SoftMax activation function6 neurons
Learning rate (LR)0.01
Decay, momentum, 0.9
Loss, optimizercategorical_crossentropy, sgd
Epochs99
Batch_size35