Research Article

A Framework for Identification and Classification of IoT Devices for Security Analysis in Heterogeneous Network

Table 4

Optimal hyperparameters list values.

First deep neural network
Input layer with activation function22 neurons
Total hidden layers4 hidden layers
First unseen (hidden) layer using the best activation function, Rectified Linear Unit (ReLu)300 neurons
Second unseen (hidden) layer using the best activation function, Rectified Linear Unit (ReLu)500 neurons
Third first unseen (hidden) layer using the best activation function, Rectified Linear Unit (ReLu)150 neurons
Fourth unseen (hidden) layer using the best activation function, Rectified Linear Unit (ReLu)300 neurons
Output layer with SoftMax activation function2 neurons
Learning rate (LR)0.0001
Decay, momentum, 0.9
Loss, optimizermean_squared_error, sgd
Epochs3800
Batch_size15

Second deep neural network
Input layer with activation function22 neurons
Total hidden layers4 hidden layers
First unseen layer using the best activation function, Rectified Linear Unit (ReLu)300 neurons
Second unseen (hidden) layer using the best activation function, Rectified Linear Unit (ReLu)500 neurons
Third first unseen (hidden) layer using the best activation function, Rectified Linear Unit (ReLu)700 neurons
Fourth unseen (hidden) layer using the best activation function, Rectified Linear Unit (ReLu)300 neurons
Output layer with SoftMax activation function6 neurons
Learning rate (LR)0.00001
Decay, momentum, 0.9
Loss, optimizercategorical_crossentropy, sgd
Epochs3800
Batch_size30