Research Article
A Framework for Identification and Classification of IoT Devices for Security Analysis in Heterogeneous Network
Table 4
Optimal hyperparameters list values.
| First deep neural network | Input layer with activation function | 22 neurons | Total hidden layers | 4 hidden layers | First unseen (hidden) layer using the best activation function, Rectified Linear Unit (ReLu) | 300 neurons | Second unseen (hidden) layer using the best activation function, Rectified Linear Unit (ReLu) | 500 neurons | Third first unseen (hidden) layer using the best activation function, Rectified Linear Unit (ReLu) | 150 neurons | Fourth unseen (hidden) layer using the best activation function, Rectified Linear Unit (ReLu) | 300 neurons | Output layer with SoftMax activation function | 2 neurons | Learning rate (LR) | 0.0001 | Decay, momentum | , 0.9 | Loss, optimizer | mean_squared_error, sgd | Epochs | 3800 | Batch_size | 15 |
| Second deep neural network | Input layer with activation function | 22 neurons | Total hidden layers | 4 hidden layers | First unseen layer using the best activation function, Rectified Linear Unit (ReLu) | 300 neurons | Second unseen (hidden) layer using the best activation function, Rectified Linear Unit (ReLu) | 500 neurons | Third first unseen (hidden) layer using the best activation function, Rectified Linear Unit (ReLu) | 700 neurons | Fourth unseen (hidden) layer using the best activation function, Rectified Linear Unit (ReLu) | 300 neurons | Output layer with SoftMax activation function | 6 neurons | Learning rate (LR) | 0.00001 | Decay, momentum | , 0.9 | Loss, optimizer | categorical_crossentropy, sgd | Epochs | 3800 | Batch_size | 30 |
|
|