Research Article
An Accurate Heart Disease Prognosis Using Machine Intelligence and IoMT
Table 4
Results of different classifiers based on different feature selection methods in validation set.
| Type of data | Method | Accuracy | t-SNE | F-score | CFS |
| Numerical resources | SVM | 90.12 (±0.032) | 88.34 (±0.570) | 81.22 (±0.0078) | RF | 85.12 (±0.0322) | 86.43 (±0.120) | 83.11 (±0.056) | GB | 90.21 (±0.0167) | 78.45 (±0.077) | 88.25 (±0.110) |
| Image resources | 92.60(±0.570) | 93.12 (±0.061) | 95.65 (±0.018) | SVM | 94.16(±0.420) | 96.32 (±0.045) | 89.32 (±0.130) | RF | 95.78(±0.220) | 86.25 (±0.190) | 90.74 (±0.470) | GB |
|
|