Research Article

An Accurate Heart Disease Prognosis Using Machine Intelligence and IoMT

Table 4

Results of different classifiers based on different feature selection methods in validation set.

Type of dataMethodAccuracy
t-SNEF-scoreCFS

Numerical resourcesSVM90.12 (±0.032)88.34 (±0.570)81.22 (±0.0078)
RF85.12 (±0.0322)86.43 (±0.120)83.11 (±0.056)
GB90.21 (±0.0167)78.45 (±0.077)88.25 (±0.110)

Image resources92.60(±0.570)93.12 (±0.061)95.65 (±0.018)SVM
94.16(±0.420)96.32 (±0.045)89.32 (±0.130)RF
95.78(±0.220)86.25 (±0.190)90.74 (±0.470)GB