Research Article

Machine Learning-Based CO2 Prediction for Office Room: A Pilot Study

Table 2

Comparison of various models on the basis of statistical parameters.

S.N.MethodsStatistical parameters for CO2Standard deviation
MSERMSEMAEMAPENS

1Optimized GPR0.988740.9776117.645684.200683.350980.43250.981725.5432
2GPR0.982590.9654827.087245.204544.254330.83930.962725.1313
3Optimized EL0.964470.9302053.232677.296075.883081.16690.926724.4882
4Optimized DT0.957580.9169660.300037.765316.004051.81310.916925.8812
5DT0.937140.8782388.420949.403247.140551.41010.878225.3288
6ANN0.920640.84758111.576110.562968.241381.74040.831425.7913
7EL0.895920.80267156.492712.509709.979651.96950.784520.5966
8LR0.895660.80221143.632211.984679.784631.93410.802224.2076
9Optimized SVM0.893490.79832147.866212.160029.645781.90980.796424.5402
10SVM0.890440.79288153.083312.372689.900231.96420.789224.1408