Research Article

A Convolutional Self-Attention Network for CSI Reconstruction in MIMO System

Table 5

NMSE (dB), cosine similarity , and FLOPs, where CR is the compression ratio.

CRMethodIndoorOutdoorFLOPs
NMSENMSE

1/4CsiNet-17.360.99-8.750.915.41 M
LightCNN-18.410.99-9.310.9224.72 M
CRNet-24.10/-12.57/24.57 M
CLNet-29.16/-12.88/4.05 M
CSANet-const-30.660.99-13.800.9445.83 M
CSANet-cosine-34.180.99-14.730.9545.83 M

1/16CsiNet-8.650.93-4.510.793.84 M
LightCNN-12.060.95-6.110.8621.58 M
CRNet-10.52/-5.36/23.00 M
CLNet-11.15/-5.73/2.48 M
CSANet-const-13.790.94-6.290.8644.26 M
CSANet-cosine-15.540.96-6.520.8244.26 M

1/32CsiNet-6.240.89-2.810.673.58 M
LightCNN-9.920.93-3.050.6921.35 M
CRNet-8.90/-3.16/22.74 M
CLNet-8.95/-3.49/2.22 M
CSANet-const-10.210.93-4.140.7843.99 M
CSANet-cosine-11.240.94-4.450.7943.99 M

1/64CsiNet-5.840.87-1.930.593.45 M
LightCNN-3.970.79-2.270.6521.02 M
CRNet-6.23/-2.19/22.61 M
CLNet-6.34/-2.19/2.09 M
CSANet-const-6.140.86-2.410.6543.86 M
CSANet-cosine-6.560.88-2.860.6743.86 M