Research Article
Hybrid Low-Rank Tensor CP and Tucker Decomposition with Total Variation Regularization for HSI Noise Removal
Table 1
All algorithms compare the performance of WDC data set under different noise types.
| Noise type | Index | Noisy | LRTV | WTV-HMCT | BM4D | WGLRTD | KBR | LLRT |
| Case 1 | MPSNR | 28.230 | 31.179 | 38.431 | 37.049 | 37.610 | 36.874 | 40.021 | MSSIM | 0.869 | 0.940 | 0.987 | 0.981 | 0.982 | 0.980 | 0.989 | MFSIM | 0.941 | 0.959 | 0.992 | 0.987 | 0.989 | 0.990 | 0.992 | SAM | 0.215 | 0.117 | 0.057 | 0.069 | 0.062 | 0.049 | 0.042 |
| Case 2 | MPSNR | 18.589 | 25.162 | 31.459 | 30.255 | 31.959 | 31.102 | 32.623 | MSSIM | 0.521 | 0.779 | 0.938 | 0.921 | 0.946 | 0.935 | 0.949 | MFSIM | 0.776 | 0.875 | 0.968 | 0.949 | 0.963 | 0.962 | 0.969 | SAM | 0.484 | 0.163 | 0.112 | 0.120 | 0.101 | 0.065 | 0.074 |
| Case 3 | MPSNR | 8.135 | 20.241 | 23.151 | 23.651 | 25.469 | 24.515 | 25.839 | MSSIM | 0.109 | 0.449 | 0.740 | 0.697 | 0.791 | 0.742 | 0.813 | MFSIM | 0.490 | 0.694 | 0.878 | 0.832 | 0.887 | 0.846 | 0.895 | SAM | 0.949 | 0.213 | 0.216 | 0.180 | 0.199 | 0.089 | 0.109 |
|
|