Research Article

Hybrid Low-Rank Tensor CP and Tucker Decomposition with Total Variation Regularization for HSI Noise Removal

Table 1

All algorithms compare the performance of WDC data set under different noise types.

Noise typeIndexNoisyLRTVWTV-HMCTBM4DWGLRTDKBRLLRT

Case 1MPSNR28.23031.17938.43137.04937.61036.87440.021
MSSIM0.8690.9400.9870.9810.9820.9800.989
MFSIM0.9410.9590.9920.9870.9890.9900.992
SAM0.2150.1170.0570.0690.0620.0490.042

Case 2MPSNR18.58925.16231.45930.25531.95931.10232.623
MSSIM0.5210.7790.9380.9210.9460.9350.949
MFSIM0.7760.8750.9680.9490.9630.9620.969
SAM0.4840.1630.1120.1200.1010.0650.074

Case 3MPSNR8.13520.24123.15123.65125.46924.51525.839
MSSIM0.1090.4490.7400.6970.7910.7420.813
MFSIM0.4900.6940.8780.8320.8870.8460.895
SAM0.9490.2130.2160.1800.1990.0890.109