Research Article
Hybrid Low-Rank Tensor CP and Tucker Decomposition with Total Variation Regularization for HSI Noise Removal
Table 2
All the algorithms compare the performance metrics for PAC data sets under different noise types.
| Noise type | Index | Noisy | LRTV | WTV-HMCT | BM4D | WGLRTD | KBR | LLRT |
| Case 1 | MPSNR | 28.147 | 32.521 | 38.924 | 37.709 | 39.460 | 40.911 | 39.033 | MSSIM | 0.838 | 0.933 | 0.985 | 0.975 | 0.983 | 0.989 | 0.983 | MFSIM | 0.909 | 0.953 | 0.990 | 0.981 | 0.989 | 0.991 | 0.989 | SAM | 0.263 | 0.129 | 0.071 | 0.087 | 0.058 | 0.050 | 0.046 |
| Case 2 | MPSNR | 14.163 | 24.510 | 29.275 | 28.179 | 30.290 | 30.646 | 30.489 | MSSIM | 0.219 | 0.659 | 0.864 | 0.834 | 0.887 | 0.906 | 0.893 | MFSIM | 0.584 | 0.791 | 0.910 | 0.881 | 0.930 | 0.939 | 0.930 | SAM | 0.773 | 0.201 | 0.153 | 0.140 | 0.147 | 0.081 | 0.079 |
| Case 3 | MPSNR | 8.135 | 21.671 | 25.479 | 24.453 | 26.484 | 26.898 | 27.164 | MSSIM | 0.065 | 0.451 | 0.710 | 0.663 | 0.768 | 0.785 | 0.792 | MFSIM | 0.405 | 0.683 | 0.819 | 0.801 | 0.863 | 0.870 | 0.859 | SAM | 1.060 | 0.232 | 0.195 | 0.154 | 0.221 | 0.095 | 0.086 |
|
|