Research Article

Hybrid Low-Rank Tensor CP and Tucker Decomposition with Total Variation Regularization for HSI Noise Removal

Table 2

All the algorithms compare the performance metrics for PAC data sets under different noise types.

Noise typeIndexNoisyLRTVWTV-HMCTBM4DWGLRTDKBRLLRT

Case 1MPSNR28.14732.52138.92437.70939.46040.91139.033
MSSIM0.8380.9330.9850.9750.9830.9890.983
MFSIM0.9090.9530.9900.9810.9890.9910.989
SAM0.2630.1290.0710.0870.0580.0500.046

Case 2MPSNR14.16324.51029.27528.17930.29030.64630.489
MSSIM0.2190.6590.8640.8340.8870.9060.893
MFSIM0.5840.7910.9100.8810.9300.9390.930
SAM0.7730.2010.1530.1400.1470.0810.079

Case 3MPSNR8.13521.67125.47924.45326.48426.89827.164
MSSIM0.0650.4510.7100.6630.7680.7850.792
MFSIM0.4050.6830.8190.8010.8630.8700.859
SAM1.0600.2320.1950.1540.2210.0950.086