Research Article

Accurate Base Station Placement in 4G LTE Networks Using Multiobjective Genetic Algorithm Optimization

Algorithm 1

The adopted NSGA-II pseudocode.
Input: eNodeB placement model parameters
Input: GA control operators
Input: I (population size)
Output: O (Pareto front approximation)
Steps
i:  Define fitness functions
ii:  Create an initial random population,
iii:  Compute fitness values of each chromosome in
iv:  Rank the individuals in the population using a fast nondominated sort
v:  Compute the crowding distance of each solution
vi:  While the maximum iteration number is not reached yet, do
vii: Choose parents from through binary tournament selection with crowding distance
viii:  Employ the GA operators (crossover and mutation) to create a set of new solutions,
ix: Evaluate fitness values of solutions in
x:  Merge I  [I, ]
xi:  Rank each solution in using a fast nondominated sort
xii: Compute the crowding distance meant for each solution in
xiii: Change solutions in with the best solution in
xiv: End while